
SANDIA REPORT
SAND2011-8739
Unlimited Release
Printed November 2011

Resilient Data Staging Through MxN
Distributed Transactions
Jai Dayal, Gerald Lofstead, Karsten Schwan, Ron Oldfield

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2011-8739
Unlimited Release

Printed November 2011

Resilient Data Staging Through MxN Distributed
Transactions

Jai Dayal
Georgia Institute of Technology

College of Computing
266 Ferst Drive

Atlanta, GA 30332-0765
jdayal3@gatch.edu

Gerald Lofstead
PO BOX 5800 MS 1319

Albuquerque, NM 87185-1319
gflofst@sandia.gov

Karsten Schwan
Georgia Institute of Technology

College of Computing
266 Ferst Drive

Atlanta, GA 30332-0765
karsten.schwan@gatech.edu

Ron Oldfield
PO BOX 5800 MS 1319

Albuquerque, NM 87185-1319
raoldfi@sandia.gov

Abstract

Scientific computing-driven discoveries are frequently driven from workflows that use persis-
tent storage as a staging area for data between operations. With the bad and progressively
worse bandwidth vs. data size issues as we continue towards exascale, eliminating persistent
storage through techniques like data staging will both enable these workflows to continue
online, but also enable more interactive workflows reducing the time to scientific discoveries.
Data staging has shown to be an effective way for applications running on high-end comput-
ing platforms to offload expensive I/O operations and to manage the tremendous amounts
of data they produce.

3

This data staging approach, however, lacks the ACID style guarantees traditional straight-
to-disk methods provide. Distributed transactions are a proven way to add ACID properties
to data movements, however distributed transactions follow 1xN data movement semantics,
where our highly parallel HPC environments employ MxN data movement semantics. In this
paper we present a novel protocol that extends distributed transaction terminology to include
MxN semantics which allows our data staging areas to benefit from ACID properties. We
show that with our protocol we can provide resilient data staging with a limited performance
penalty over current data staging implementations.

4

Contents

1 Introduction 9

2 Related Work 11

3 Resilient Data Staging 13

4 Design and Implementation 15

Assumptions . 15

Protocol . 15

Initialization Phase . 17

I/O Phase . 17

Voting (Validation) Phase . 18

Finalize Phase . 18

Failure Modes . 18

Initialization Phase Failures . 19

Writing Phase Failures . 20

Voting and Finalize Phases Failures . 20

Alternatives to Timeouts for Fault Detection . 20

5 Performance Evaluation 23

Experimental Setup . 23

Results . 23

6 Conclusions and Future Work 27

5

References 29

6

List of Figures

3.1 Data Staging Overview . 14

4.1 MxN Distributed Transaction Protocol . 22

5.1 Protocol Overhead . 24

7

8

Chapter 1

Introduction

Many current scientific computing applications generate tremendous amounts of data.
In fact, some applications running on current generation petascale machines are already
generating terabytes of data every few minutes [13, 19]. Frequency of this data is expected
to increase even further from increased memory images in larger runs and to manage resilience
requirements. The projected move from petascale to exascale [10] shows a 1000× increase in
compute performance, a 100× increase in memory capacity, and only a 10× increase in I/O
bandwidth. To realize the full potential of these exascale machines, the I/O performance
problem must be addressed. Data staging techniques have demonstrated the ability to help
alleviate this problem.

A looming barrier to adoption of these techniques is the movement of existing offline
scientific workflows to use data staging areas as the intermediate storage location for data
as it is processed by various workflow components. However, before these workflows can
effectively be moved online using staging areas, failure must be addressed. One aspect that
this paper covers is the need to ‘know’ that a data set has moved successfully, that it is
complete, and that it is correct. Ideally, a level of durability is also required, particularly
for the short term. In the long term, this will be less important as the relative cost of
computation compared with data storage shifts strongly in favor of recomputation rather
than storage. Key to enforcing these data guarantees is a protocol to manage the whole data
movement such that these guarantees are enforced both writing and reading processes.

The benefits for using staging have been proven in several papers [16, 9, 18]. Our group
has taken the data staging approach using asynchronous I/O and hosting operations on data
prior to writing to persistent storage [1, 20]. Some of the operations we have demonstrated
a decrease in total compute time even when including the additional cost of the staging
nodes performing indexing, filtering, and preparing/formatting the data to decrease subse-
quent read-times for analysis or visualization toolkits [20, 8]. This “in-flight” analysis gives
scientists earlier access to the data aiding and accelerating data validation and the scientific
discovery process.

One limitation to this approach, however, is that with such a large number of compute
resources, faults are expected regularly rather than as a rare exception. Since we are writing
to another processes memory instead of directly to permanent storage, any data stored in a
processes memory can be lost during a fault or node crash. Depending on the constraints,
some simulations and analysis tools require complete data sets for downstream processing.

9

For example, a complete data set is required to completely visualize an output set without loss
of information or fidelity. The portion of resilient staging this paper addresses is providing
transactional support for the data movements between the simulation, analysis code, and
staging area. To do this, we augment current transaction terminology, which follows 1xN
semantics, to work with MxN scenarios, i.e., M simulation processes writing to N staging
server processes.

Our initial approach aims for a complete, rather than optimal protocol. Ongoing efforts
are identifying which messaging can be eliminated or combined without loss of guarantees.
This initial approach adds a few extra rounds of messages during a scientific application’s
output phase to coordinate the transaction state. By inserting a small amount of additional
metadata in these messages, we are able to track the state of the transaction as data is
moved to, and stored in, the staging area. Our current implementation uses two popular
communication APIs to transmit the data and metadata both locally and between the simu-
lation and the staging process spaces. Communication between simulation and staging area
is done via the NSSI RPC package [17, 11]. NSSI was recently added to Trilinos as part of
the Trios I/O capability area. It provides a simple API for an RPC mechanism that can
manage RDMA data movements. It has native drivers for Portals, InfiniBand, Cray LUC,
and the new Cray Gemini networks. By using a separate process space for staging, faults
in the staging area or in the compute area are isolated from each other avoiding the loss of
one due to the failure of the other. Communication within the simulation and within the
staging area is performed using traditional MPI messaging. Neither of these choices are a
requirement for the protocol to function properly.

Multiple advantages can be gained from adding resilience to data staging. By encap-
sulating our data movements into transactional units, we can hide from any readers, such
as an analysis or visualization code, perhaps another running simulation, incomplete or in-
correct data sets. We can provide an application with knowledge as to whether or not its
data has been successfully committed to staging (as in all data has been written). We can
more quickly identify failures so the application can better decide how to proceed, such as
deciding to change the output to writing to persistent or different storage to avoid loss of
this data output. The last decision can be handled in the IO API rather than requiring
any intervention from the scientific application programmer. A system like ADIOS [15] that
affords incorporating these custom protocols makes adding this protocol transparent.

Through these techniques, we enable data staging to move from the realm of solely being
used as a way to hide I/O costs or to perform some “in-flight” processing into a way to move
offline workflows into online workflows that eliminate, or at least greatly reduce, the use of
slow, centralized, persistent storage resources.

The remainder of this paper is organized as follows. Chapter 2 presents a short overview
of the related work in the field. We introduce the concept of resilient data staging and MxN
transactions in chapter 3. We next present our design and implementation in chapter 4, as
well as a discussion on the different failure modes and how we detect these failures in our
system. Chapter 5 presents our results, and chapter 6 presents our conclusion.

10

Chapter 2

Related Work

Much research has been conducted on providing resilient distributed data stores and
transport mechanisms. However, while such work has provided novel benefits for their in-
tended platforms, they lack several key features needed for our data staging use cases.

GridFTP [3] extends traditional FTP to provide reliable high-performance data move-
ment in a grid computing environment. GridFTP provides support for collective data trans-
fers via parallel striped data-transfers, where files distributed over several storage devices is
transferred over some number of channels to a set of receivers. GridFTP also provides a way
to restart transmissions that have been interrupted, so that the entire data transfer does not
have to start over from the beginning.

This work differs from ours on several fronts. First, our protocol is designed to operate
during the on-going simulation in a time-critical environment, where as GridFTP is designed
to transfer data before and after simulation runs. Our work is also designed to work at ex-
treme scales, with potentially millions of cores on one side communicating with thousands on
the other. It’s unseen if GridFTP can perform at these scales. Additionally, to our knowl-
edge, it’s not completely clear as to what level of safety semantics GridFTP provides, for
example, data users can see files that have incomplete data from interrupted transmissions.
Our intent is to shield data consumers from such erroneous data.

We have also surveyed a range of work for resilient distributed systems more geared
towards the enterprise community, such as Sinfonia [2], PNUTS [5], Cassandra [14], and
G-Store [7]. While these systems have provided novel contributions for their intended use
cases, they fall short for our needs in a few ways. First, distributed transactions for these
systems employ traditional 1xN semantics, where as we require MxN semantics. Second,
these systems make use of disk storage devices for logging, which helps to provide durability
and persistence. Data staging is intended to shield the simulation from disk overheads, so
using log-files in such a manner may reintroduce these overheads. Third, work like PNUTS
take advantage of eventual consistency models which will not work for our HPC environment,
as allowing analysis codes or visualization tools to operate on stale data is useless and
expensive. The potentially infinite delays for the eventual consistency to occur can also
inject unacceptably long delays in processing both from an interaction perspective, but also
from a data storage perspective. If the consistency is delayed too long, the amount of
storage must increase to deal with the incomplete data set whie the next interation may
begin movement to the staging area.

11

In summary, the key differentiators between our work and the other research, including
works such as G-Store and Cassandra is that we require MxN semantics and immediate
consistency for distributed transactions. Staging areas are intended to shield the simulations
from storage system overheads, so use of log-files is troublesome, and we intend to operate
at extreme scales, with potentially millions of cores; it’s not clear of the previous research
can scale to these levels.

12

Chapter 3

Resilient Data Staging

Figure 3.1 presents a conceptual model of a data staging area. Our view is a departure
from existing views of staging areas in that we see storage as a last resort and instead are
focused on building support for complete, in compute area workflows consisting of a core
simulation that has data processed by a collection of analysis codes through a staging area.
What we have is some group of processes reading and writing to a data store, which is
composed of some other group of a number of processes, known as an MxN data redistribu-
tion [6, 12]. Additionally, there might be some visualization or analysis engine reading and
writing to the data store. Figure 3.1 also shows a storage subsystem that would be used to
permanently store the data for later access and use. The staging area can be viewed as a
type of intermediary between the simulation, various analysis and visualization routines, and
the shared storage device. Although the diagram only shows a single staging area, nothing in
this design precludes using multiple staging areas to move data through the online workflow
while minimizing interference effects from network contention.

Using the staging area provides us with several benefits. With the traditional straight-to-
disk approach, the disk subsystems are shared among at least other processes on the same
machine if not also processes on other machines that share the same storage array. This
introduces contention points that further degrade I/O performance. With staging, we have
direct control over our staging resources so we can employ our own resource, fault tolerance,
and data management strategies as needed. Additionally, because the staging servers are
compute nodes, we can uses these compute resources to perform useful operations while the
data is on its way to disk [20]. Finally, we can choose how many different processes use
the same staging area managing the contention for both bandwidth and memory resources.
This final piece is what will afford sufficient memory to support the entire offline workflow
process while maintaining I/O bandwidth. Ultimately, we would like to see this work as
a piece of the argument for incorporating large memory capacity staging nodes into future
HPC platforms.

This new approach introduces some drawbacks in regards to fault tolerance and resilience;
it lacks the ACID guarantees that can be found in modern storage subsystems. With these
ACID guarantees, we can provide applications and analysis codes with some guarantee that
the data has been moved completely and correctly and that once the operations are com-
pleted, they are not lost. While the presented protocol supports the atomic, consistent, and
isolated properties, supporting durability requires additional functionality such as replication

13

and node local persistent storage. Distributed transactions are a proven method for provid-
ing ACID properties, so we leverage them here and extend upon them, as current distributed
transactions operate with 1xN semantics, to operate with our MxN data movements.

Figure 3.1. Data Staging Overview

14

Chapter 4

Design and Implementation

Assumptions

For simplicity in our initial implementation, we made a few assumptions. All client (com-
pute) processes participate in all transactions and sub-transactions. All client processes are
in sync in terms of transaction and sub-transaction IDs; we avoid additional communication
needed for the clients to agree upon a set of valid IDs if this knowledge is not known. We are
considering applications that are typically working on a number of large arrays where each
processes is performing some computation on the local portion of the array values. At each
output step, the processes write any number of variables, some of which are the local pieces
of global arrays while others which are single value variables. Additionally, some metadata
will be written, such as which portion of the global array this process is writing and how
many elements are in this local portion of the global array. This information can later be
used to index the data making it available for queries.

These assumptions, however, are not inherent to our idea, but just for our initial imple-
mentation so we can get some benchmarks and some idea as to the scalability of distributed
MxN transactions. As we are extending the system, these assumptions are being relaxed so
we can operate with a wider variety of applications and support more complex I/O patterns.
Ultimately, this protocol will be sufficiently isolated from the IO stream to be used for dy-
namic system reconfiguration tasks and other non-data movement activities that should be
protected using ACID properties.

Protocol

The communication for our MxN transaction protocol is implemented with, but not tied
to, two communication mechanisms: NSSI [11] and MPI. NSSI is an RPC framework built as
part of the Lightweight File Systems Project (LWFS) [17]. NSSI supports high performance
communication technologies such as InfiniBand, Portals, and GNI. Figure 4.1 is an overview
of our protocol. For lines with no message description, it’s the same description as the line
above it.

Our goal here is to shield the simulations and analysis codes from failures with other
components of the system. It is possible to implement our MxN transaction protocol strictly

15

with MPI, but this way has several drawbacks. First, if we make the staging area and the
scientific application one MPI application, any process crashes in the staging area will bring
down the simulation and visa-versa, violating the notion of protecting one component from
the failures of another. Second, we could use MPI intercommunicators, however, these have
performance implications as current MPI implementations only allow blocking point-to-point
MPI calls.

For our protocol, we have two distinct sides, the compute clients (the simulation) and
the staging application. In an initial effort to manage the MxN cartesian product sets of
messages, the initial protocol implementation replaces this logical communication with a
transaction coordinator for each side reducing the complexity to a 1-to-1 communication.
This optimization affords an initial level of scalability, but has not been proven to scale to
exascale-sized problems. Each transaction coordinator acts as a liaison to the other side, for
example, only the client coordinator initializes a transaction with the staging coordinator.
The coordinators are also responsible for making decisions for their respective sides (such as
committing or aborting a transaction) and dispersing these decisions to the subordinates on
their side.

We use NSSI to communicate between the compute processes and the staging processes.
This includes communication between coordinators as well as when the compute clients write
or read data from the staging servers. MPI is used when coordinators need to communicate
to their respective subordinates, such as gathering information from the subordinates, or
dispersing decisions to the subordinates. An example of such a decision on the server side,
would be responding to a request to commit from the client coordinator, as we explain below.

To support transactions for the multiple variables that comprise a single data movement
event in the HPC environment, we take a nested-transactions approach. A given transaction
consists of any number of sub-transactions that represent the read/write of one variable or
array piece in an output step. A sub-transaction consists of any number of read or write
operations, and based on our assumptions above, for N client servers, the staging area as a
whole will expect some multiple of N operations. For any given output step, there may be
hundreds of sub-transactions. Our protocol consists of four phases for a transaction.

1. Initialization Phase - The clients initialize a transaction with the staging coordinator.
The clients then initialize, potentially asynchronously, a number of sub-transactions
with the staging coordinator. This phase is indicated by the begin tx and begin sub tx
messages in figure 4.1.

2. I/O Phase - The clients read and write the data for which they have initialized sub-
transactions. This is indicated by the write data message in figure 4.1. The client
subordinates read/write directly from the staging subordinates.

3. Voting (Validation) Phase - Asks whether or not the sub-transactions and outer trans-
action can be committed or aborted. This is determined by a message count: if the
staging subordinates have received, in total, the expected number of reads or writes

16

correctly, the transaction can be committed. If not, the vote on the staging side is to
abort. This is scene by the request vote sub tx message.

4. Finalize Phase - Commits or aborts the transaction, depending on whether or not all
sub-transactions have completed successfully, updating any metadata store and data
storage to reflect the completed transaction.

Initialization Phase

The begin tx message represents the initialization phase as shown in figure 4.1. The client
coordinator sends this message to the server coordinator that then broadcasts the message
to the server subordinates. If not all OK messages are returned from the subordinates to
the server coordinator, for an allotted time window, the server coordinator returns to the
client coordinator an error message. The client coordinator forwards the server coordinators
response to the client subordinates.

If the first step is successful, the client coordinator can then initialize a sequence of
sub-transactions with the staging coordinator. The process is the same for sub-transaction
initialization, with the addition of an extra identifier field. variable, it is possible for hundreds
of variables to be written per client process per timestep, thus, there may be hundreds of
sub-transactions. Unlike the previous step, the sub-transactions can be initialized at the
client side in a non-blocking manner; the client initializes a batch of sub-transactions at
once, and waits for the responses. subordinates in similar fashion to the first step.

I/O Phase

The next phase involves moving data, symbolized with the write data message in Fig-
ure 4.1. After receiving a success message for each sub-transaction, the client coordinator
informs its subordinates that it can start reading/writing data for these sub-transactions.
The client subordinates then start asynchronously writing or reading their data.

It should be noted here, that since every client processes is participating in a given
sub-transaction, and that it’s unlikely for an application to want to proceed if only some
sub-transactions can be instantiated and others can’t, it might be possible for the client
coordinator to disperse a single success message to its coordinates. This is possible because
of the assumptions we mentioned above, however, in the future, we want to provide the
application with the flexibility for some processes to create sub-transactions on the fly. A
common use-case for this is the automatic mesh refinement (AMR) scenarios where some
events are triggered on a sub-set of the processes causing those processes to have additional
output.

17

Voting (Validation) Phase

After each process has written its data, the client coordinator will asynchronously issue
to the staging coordinator a voting request for each sub-transaction. The ‘vote’ consists of
the staging coordinator asking the subordinates how many writes for a given sub-transaction
it has received. If the total number of writes matches the number of expected writes, then
the staging coordinator returns a COMMIT message to the client coordinator. If not, then
an ABORT message is returned instead. This gives us some level of atomicity; the data
movement for a sub-transaction is all or nothing.

Upon receiving a COMMIT message, the client coordinator then broadcasts this message
to the subordinates. Upon receipt of this message, the subordinates will respond with an
OK message and prepare to commit the transaction. If an OK message is received from
each subordinate within the allotted time window, the client coordinator sends the commit
message to the staging coordinator. Another round of messages occurs on the staging side,
and a final OK or error message is sent back to the client coordinator; this message is then
dispersed to the subordinates.

Finalize Phase

After the voting phase for the sub-transactions, the application can begin to commit
or abort the outer transaction. If all sub-transactions completed successfully, then it is
natural to commit the transaction. However, if some sub-transactions did not complete,
the application can make a decision as to whether or not to continue with partial data or
not, as it now knows which sub-transactions, or variables, were problematic. Perhaps it
could attempt to re-write those variables or abort the entire transaction all together. The
procedure for voting on a main-transaction is similar to the voting in the previous steps with
a few rounds of messages and a final message between the client and staging coordinator.

It is important to note that if at any time during this process a timeout occurs, a subor-
dinate aborts the transaction locally and informs the coordinator. The coordinator detects
this abort and disperses the message accordingly.

Failure Modes

From the above protocol description, we can see that there are several failure scenarios
that can occur at different points in the protocol. Our system is designed to detect these
failure modes at the client side and staging server side. For each of the phases listed in
section 4, failures can occur at both the data readers and writers and the data staging area.
An examination of some of the potential failure modes is listed below with a discussion of
how each is either addressed in the current implementation or in the design being fleshed
out over time in our experimental system.

18

Failures can happen at the coordinators or at the subordinates, and we can detect these
via timeouts and message counts. For example, timeouts are typically used by subordinates
to determine if the coordinator has failed. For example, if a transaction has not had any
state changes for a period of time, the subordinate will set the flag for its local object
representing the appropriate transaction or sub-transaction as aborted. For a coordinator,
if the coordinator does not receive the correct number of responses from its subordinates
within a period of time, it considers this to be a subordinate failure, and will inform the
remaining subordinates, and opposite coordinator, accordingly. Currently, we are working
on adding some durability to ensure that the data persists even if a staging process dies after
the transaction or sub-transaction has completed and been committed. We are also working
on ways to allow clients to re-try failed sub-transactions by writing data to different staging
servers, in case of a staging server failure.

Initialization Phase Failures

The initialization process for both transactions and sub-transactions follow the same
steps, so the failures and detection apply to both. At each side (writers/readers and staging),
there are two possible sources of failures: the coordinator or the subordinates. One important
feature here is that as we detect failures, the client side has the ability to retry its transactions
or sub-transactions and even vote on a new coordinator should it be safe to continue in a
reduced capacity. For example, if during the write phase, a staging server is down, the client
processes can re-try the sub-transaction by writing its data to a different staging server.

• Client Coordinator Fails: Subordinates on the client side detect this via a timeout;
if the transaction is in limbo, or the same state, for too long, it is aborted. The staging
servers have timeouts as well. If the staging coordinator cannot send the response back
after a period of time, the staging coordinator will abort the transaction.

• Client Subordinate Fails: Client coordinator detects that it does not receive the
correct amount of responses within the time window, so it aborts and tells remaining
subordinates to abort the started transaction. Client coordinator also sends a mes-
sage to the staging coordinator to abort. The staging servers do not know of such
failures explicitly as the staging coordinator simply receives the abort from the client
coordinator.

• Staging Coordinator Fails: The client coordinator knows this occurs when it stops
receiving returns from its RPC calls. When this is detected, the client coordinator
will tell its subordinates to abort. Staging subordinates have timeouts too, so they
will cancel transactions in limbo for too long. Since the staging subordinates will no
longer be receiving messages from the staging coordinator, the transaction will not be
changing states.

• Staging Subordinate Fails: The staging coordinator does not receive the correct
number of responses from its subordinates. When this occurs, the staging coordinator

19

sends an error to client coordinator as an RPC return value and tells the remaining
staging subordinates to abort.

Writing Phase Failures

These are failures that can happen during the writing phase, i.e., when the clients are
reading and writing data to and from the staging servers. If some read and write operations
do not go through, then the number of successful operations will be less than the number
expected. These errors can be detected as follows.

• Client Side: The client subordinates or coordinator does not get responses back after
sending data to server. The data is sent via NSSI RPC call, and if no response is
received after a period of time, this read/write operation is marked as unsuccessful.
During the voting phase, the client coordinator asks each subordinate how many writes
were successful, if the number of successes matches the number expected, the sub-
transaction is marked successful, which means it can be later committed. It is true
that the data might be transferred, but done so incorrectly resulting in junk data. The
data can be validated by using MD5 hashes or checksums.

• Staging Side If a staging subordinate goes down after the messages are sent, we will
detect this during the voting phase when staging coordinator asks each subordinate
how many writes for variable it received. If some subordinates do not respond, the
number of successful writes will not equal the number of expected writes.

Voting and Finalize Phases Failures

From the above discussions, we can see how the system uses a combination of timeouts
and message counts to determine if a failure has occurred or not. For the remaining two
phases, voting and finalization, the same methods listed above are applied here.

Alternatives to Timeouts for Fault Detection

While timeouts are the current mechanism used for detecting some failures (e.g., the loss
of a process), other mechanisms can certainly work and can potentially dramatically reduce
the number of messages required to enforce the guarantees. One initial mechanism under
consideration is to rely on the reliability of the underlying parallelism mechanism, such as
MPI, to detect process failures and ultimately abort the transaction. This sort of mehcanism
is implementation dependent, but could potentially dramatically reduce the coordination
messaging requirements compared with the current, more general implementation.

Other mechanisms that reduce either the message count and/or provide a way to passively
detect a failure could dramatically improve the scalability of this technique. Approaches

20

that are also more general than relying on the underlying transport for parts of the failure
detection are currently under investigation.

21

C1 Client
Coord.

 begin_tx(tx_id)

C2 Server
Coord. S2 S1

 begin_sub_tx(tx_id, name, expected_writes)

 write_data(tx_id, name, start_offset, size, data)

 request_vote_sub_trans(tx_id, name, COMMIT)

 finalize_sub_trans(tx_id, name, COMMIT)

 request_vote_trans(tx_id, COMMIT)

 finalize_trans(tx_id, COMMIT/ABORT)

 OK

 OK

 start_write(tx_id, name)

 COMMIT/ABORT

 begin_tx(tx_id)

OK

 COMMIT/ABORT

OK

OK

OK

Figure 4.1. MxN Distributed Transaction Protocol

22

Chapter 5

Performance Evaluation

Experimental Setup

The experiments are performed on Sandia National Lab’s RedSky machine, a Sun Blade
center containing 4000 nodes, running Intel Xeon 5500 Series processors (8 cores each), with
InfiniBand as the communication fabric. Two common communication APIs, OpenMPI
and Sandia’s NSSI, are employed as mentioned above. OpenMPI is used for communication
between a coordinator and its subordinates. To communicate across application barriers, i.e.,
between MPI applications, Sandia’s NSSI library is used. This shields the simulation from
staging server failures and visa-versa. This also avoids the performance overheads of using
MPI inter-communicators, which only allow for point-to-point, blocking communication

The staging servers poll a set of message queues: one set for NSSI messages and another
set for MPI messages. This implementation introduces some delay when detecting the arrival
of an MPI message. For these experiments, the staging servers check for MPI messages
approximately every 50 milliseconds. At higher intervals, the delay time begins to dominate
and overshadow the protocol overheads as the core count scales. Lowering this polling
duration too much will steal time away from the staging server polling for NSSI messages.
The selected 50 ms works as a balanced, realistic delay that must be revisited as the system
scales.

Results

For these experiments, the overhead of the protocol is tested at each of the phases.
The reading/writing phase depends on the underlying communication infrastructure and is
independent of the protocol. The measurements show the time the simulation spends at
each phase of the protocol, and measure this at different core counts, all using a ratio of 128
simulation processes to 1 staging process. As shown in figure 5.1, we scale from 128:1 to
4096:32.

At 128:1, the protocol spends very little time executing the protocol as the server side
does not have to poll or process any MPI messages. The jump between 128:1 and 256:2 is
largely due to the fact that now there are subordinates on the staging side and the polling
delay can be any where between (0,100] milliseconds for a roundtrip MPI message. The

23

Figure 5.1. Protocol Overhead

24

slight variations in time periods, i.e., the time being slightly lower as it moves up in scale,
between 512 and 1024 client processes for example, is because of the server polling rate of
the staging servers. As mentioned above, for a round trip message, anywhere from (0,100]
milliseconds can be spent in between polling periods. As this scales up from there each phase
of the protocol increases at about the same rate as the other phases. This is because the
number of roundtrip messages and message sizes are pretty much the same, with only a few
bytes difference. In these experiments, the time required to initialize a sub-transaction is
an average of 10 sub-transactions per transaction where each sub-transaction was created
in a blocking manner. We are currently implementing a feature so that a simulation can
instantiate a number of sub-transactions asynchronously.

As the results show, the protocol does achieve good scalability: doubling the core count
does not result in a doubling of the time the simulation spends in each phase of the protocol.
This is largely due to MPI being used to communicate between coordinator and subordinate
thus exploiting all of the advantages the scalability improvements implemented in the MPI
library.

Further improvements can be made to the protocol by adding different optimizations
such as batching sub-transaction initialization requests, or piggybacking messages on top of
each other as in Sinfonia [2], a task currently underway. For example, instead of creating
sub-transactions synchronously, it would be beneficial to allow the simulation to create a
large number of sub-transactions at once and sending these requests in one message to the
staging coordinator. Additional improvements could result from piggybacking messages.
For example, it is possible to piggyback the voting request of a sub-transaction with the last
chunk of data sent in the write phase.

In summary, the implementation of the protocol, in its most straight-forward fashion
with no attempt at incorporating optimizations, shows that the protocol does not add large
overheads to the output phase of a simulation and that it can achieve good scalability using
standard communication libraries like MPI.

25

26

Chapter 6

Conclusions and Future Work

As stated above, this is very early results showing the potential of incorporating MxN
distributed transactions as a way to enable online scientific application workflows. We are
extending this current implementation in several ways. First, we must be able to read
completed transactions out of the staging area. To do this, we are working on a metadata
service that indexes which transactions are committed and ready for reading and where these
data pieces are located within the staging area. Existing efforts, like SciDB [4], in-memory
databases, and HPC-related data storage formats metadata will guide the annotation, in-
dexing, and query capabilities provided.

Our current implementation provides some level of atomicity; all pieces of data are written
in full or the transaction is aborted, but we are moving towards full ACID compliance. One
feature we are working on is adding some redundancy, such as data replication or parity
storage similar to RAID systems, to provide durability so that if a server is lost, the data
can be recovered. This can also be accomplished in the future as technologies involving
non-volatile memory progress and are incorporated into future platforms. Traditionally, this
is done with write-ahead log files on disk. However, our staging model is designed to avoid
the overheads involved with writing to disk.

The current reliance on timeouts for detecting failures is a convenience rather than a
requirement. Other mechanisms that are less sensitive to jitter, such as ping messages, may
be incorporated as the implementation progresses. These techniques will be selected based
on the reliability and performance implications to the overall protocol.

There are also several opportunities for us to optimize our protocol by piggybacking
certain messages and providing an optional optimistic and potentially implied success model
thus reducing the overall volume of messages. Some examples of similiar optimizations were
found in Sinfonia [2], where they introduce the concept of mini-transactions. One such
example found in this work is piggy-backing the transmission of the data along with the
commit/abort request. Our work will make use of such ideas.

An important component that must be included as well to extend the viability of this work
from the generally secure HPC environment to a distributed environment is the inclusion of
data validation schemes, such as an MD5 hash, for each block written to the staging area.
Care will be taken to help ensure not only random or failure induced changes are caught,
but also some attention to malicious attacks on the data movement can also be addressed.

27

Additional data management optimizations, such as in staging area reorganization to
reduce the number of data blocks, braking data into more manageable pieces, compression,
statistical sampling, and other techniques as demonstrated in PreDatA [20] will also be
incorporated to improve the performance and scalability of staging areas for online scientific
workflows.

From the preliminary results shown in section 5, we can provide a level of resilience for
data movements to and from staging areas by augmenting traditional distributed transactions
to contain MxN semantics. To do this, we take a nested transaction approach, where a given
transaction consists of any number of sub-transactions. Our results show that the messaging
overhead our protocol induces is small enough so that we still retain performance gains over
traditional directly to disk methods.

28

References

[1] Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten Schwan, and
Fang Zheng. Datastager: scalable data staging services for petascale applications. Clus-
ter Computing, 13:277–290, 2010. 10.1007/s10586-010-0135-6.

[2] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos Kara-
manolis. Sinfonia: a new paradigm for building scalable distributed systems. SIGOPS
Oper. Syst. Rev., 41:159–174, October 2007.

[3] William Allcock, John Bresnahan, Rajkumar Kettimuthu, Michael Link, Catalin Du-
mitrescu, Ioan Raicu, and Ian Foster. The globus striped gridftp framework and server.
In Proceedings of the 2005 ACM/IEEE conference on Supercomputing, SC ’05, pages
54–, Washington, DC, USA, 2005. IEEE Computer Society.

[4] Paul G. Brown. Overview of scidb: large scale array storage, processing and analysis. In
Ahmed K. Elmagarmid and Divyakant Agrawal, editors, SIGMOD Conference, pages
963–968. ACM, 2010.

[5] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. Pnuts:
Yahoo!’s hosted data serving platform. PVLDB, 1(2):1277–1288, 2008.

[6] Kostadin Damevski and Steven G. Parker. M x n data redistribution through parallel
remote method invocation. IJHPCA, 19(4):389–398, 2005.

[7] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-store: a scalable data store
for transactional multi key access in the cloud. In SoCC, pages 163–174, 2010.

[8] Ciprian Docan, Manish Parashar, and Scott Klasky. Dataspaces: an interaction and
coordination framework for coupled simulation workflows. In Proceedings of the 19th
ACM International Symposium on High Performance Distributed Computing, HPDC
’10, pages 25–36, New York, NY, USA, 2010. ACM.

[9] Ciprian Docan, Fan Zhang, Manish Parashar, Julian Cummings, Norbert Podhorszki,
and Scott Klasky. Experiments with memory-to-memory coupling for end-to-end fusion
simulation workflows. In CCGRID, pages 293–301, 2010.

[10] Alan Gara. Energy efficiency challenges for exascale computing. In Power
Efficiency and the Path to Exascale Computing Workshop at SC 08, 2008.
http://www.lbl.gov/CS/html/SC08ExascalePowerWorkshop/gara.pdf.

[11] Network Scalable Service Interface. https://software.sandia.gov/trac/nessie/.

29

[12] Katarzyna Keahey, Patricia K. Fasel, and Susan M. Mniszewski. Paws: Collective
interactions and data transfers. In HPDC, pages 47–54, 2001.

[13] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R. Samtaney. Grid-Based
parallel data streaming implemented for the gyrokinetic toroidal code. In SC ’03: Pro-
ceedings of the 2003 ACM/IEEE conference on Supercomputing, page 24, Washington,
DC, USA, 2003. IEEE Computer Society.

[14] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev., 44:35–40, April 2010.

[15] J. Lofstead, Fang Zheng, S. Klasky, and K. Schwan. Adaptable, metadata rich io
methods for portable high performance io. In Parallel Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1 –10, may 2009.

[16] Jay F. Lofstead, Fang Zheng, Scott Klasky, and Karsten Schwan. Adaptable, metadata
rich io methods for portable high performance io. In IPDPS, pages 1–10, 2009.

[17] Ron A. Oldfield, Patrick Widener, Arthur B. Maccabe, Lee Ward, and Todd Korden-
brock. Efficient data-movement for lightweight I/O. In Cluster, Barcelona, Spain,
September 2006.

[18] Norbert Podhorszki, Scott Klasky, Qing Liu, Ciprian Docan, Manish Parashar, Hasan
Abbasi, Jay F. Lofstead, Karsten Schwan, Matthew Wolf, Fang Zheng, and Julian Cum-
mings. Plasma fusion code coupling using scalable i/o services and scientific workflows.
In SC-WORKS, 2009.

[19] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L. V. Lewandowski,
G. Rewoldt, T. S. Hahm, and J. Manickam. Gyro-Kinetic simulation of global turbulent
transport properties in tokamak experiments. Physics of Plasmas, 13(9):092505, 2006.

[20] Fang Zheng, Hasan Abbasi, Ciprian Docan, Jay Lofstead, Scott Klasky, Qing Liu,
Manish Parashar, Norbert Podhorszki, Karsten Schwan, and Matthew Wolf. Predata-
preparatory data analytics on peta-scale machines.

30

DISTRIBUTION:

MS ,

,

1 MS 0899 RIM-Reports Management, 9532 (electronic copy)

1 MS 0359 D. Chavez, LDRD Office, 1911

31

32

v1.36

